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Cyclical dynamics and control of a neuromechanical
system: Final Report

Eric D. Tytell
Department of Mechanical Engineering, Johns Hopkins University,

tytell@jhu.edu∗

Abstract

In this project, we used computational models to analyze how the intrinsic dynamical prop-
erties of neural and mechanical systems interact to produce stable, but adaptable locomotion.
Animal locomotion is a rhythmic behavior that requires the effective coupling of multiple feed-
back loops, including mechanical coupling between the animal’s body and the environment,
coupling between muscular force production and body movement, and sensory feedback. Flo-
quet theory, a branch of nonlinear dynamics, includes ways to analyze how such rhythmic
systems respond to perturbations. We developed several robust ways of estimating the Floquet
modes of a rhythmic system, which are canonical patterns of activity after a perturbation. We
found that when a block of muscle is forced to change length sinusoidally and is cyclically
activated, it is strongly self-stabilizing, even with no sensory feedback. When two muscles act
antagonistically, as they do around most vertebrate joints, then the system is less stable natu-
rally. However, with sensory feedback, the joint can be stabilized very easily. This research
may be extended to analyze Floquet modes based on empirical data, to examine the stability
properties of real muscle, and to study the stability of fish swimming and control potential of
fish fins.

Animals must move effectively through complex, unpredictable environments. As they move,
neural circuits called central pattern generators (CPGs) produce a basic pattern of muscle activity
(Grillner, 2003), activating muscles that move the body, which interacts with the external environ-
ment (Tytell et al., 2011). At the same time, the environment produces forces back on the body,
influencing the motion (Jordan, 1996), and the CPG receives sensory inputs that modulate the loco-
motor pattern (Rossignol et al., 2006) (see Fig. 1). Each of these components has its own intrinsic
dynamical properties, but all of them must work together to produce a stable pattern.

In this project, we investigated how neural and mechanical systems can work together to pro-
duce stable cyclical dynamics. Specifically, we examined how such systems respond to pertur-
bations: small disturbances away from the normal pattern, called a limit cycle. For some pertur-
bations, the system rapidly returns to its normal limit cycle; for other perturbations, the activity
pattern changes for long periods of time.

∗Current address: Department of Biology, Tufts University, eric.tytell@tufts.edu
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A branch of dynamical systems theory called Floquet analysis (Floquet, 1883; Guckenheimer
and Holmes, 1983) allows one to classify these types of perturbations. The state of the system x(t)
can be defined in a high-dimensional state space (RP ), where x might include all of the membrane
potentials and synaptic conductances of neurons in the CPG model, or the lengths, velocities, and
calcium concentrations in a muscle model. Since the system is periodic, x(t) traces out a closed
loop γ in the n−dimensional space. A perturbation means that the system will deviate from the
limit cycle:

z(t) = x(t)− x∗(t), (1)

where x∗(t) is on the limit cycle γ.
For a particular system, Floquet analysis allows one to define a set of canonical modes uk(t)

that are particular patterns of deviations from the limit cycle. The modes are the axes of a new co-
ordinate system, centered on the limit cycle, that rotates and stretches about the cycle. Even though
the modes may be complicated, when the state of the system is expressed in this new coordinate
system, the dynamics become very simple: any perturbation simply decays exponentially back to
the limit cycle. The rate of decay is quantified by the Floquet exponent µk, so that the deviation
from the limit cycle can be written as

z(t) = eµktuk(t). (2)

Negative Floquet exponents correspond to stable patterns, and the more negative the exponent, the
more rapidly the perturbation dies away.

The goal of this project was to examine how the intrinsic dynamics of neural and mechanical
systems interact in a computational model, based on the lamprey. The primary results of the work
were
• Several robust techniques were developed for estimating limit cycles and Floquet modes. In

particular, we developed a technique for finding Floquet modes that does not require any inte-
gration. These techniques may be used when the state equation is known, but also potentially
on empirical data.
• We found that muscle is strongly self-stabilizing when activated cyclically, possibly because of

the nonlinearity in how calcium binds and releases from muscle filaments. Two muscles in an

CPG bodymuscle

mechanicslength/velocity
dependence

proprioception

environment

Figure 1: Diagram of the nested feedback loops that make up a neuromechanical system. A central
pattern generator circuit activates muscle that produces force to bend the body, which interacts with
the environment. At the same time, the environment produces reaction forces back on the body
(“mechanics”), muscle force is coupled with body motion due to length and velocity dependence, and
the CPG receives proprioceptive sensory inputs.
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antagonistic arrangement, similar to that of most vertebrate joints, have a less stable mode that
would need to be corrected by sensory feedback, but may also provide a simple way to control
turning.
• Preliminary evidence was found for an optimal feedback strength for maximum stability in the

neuromechanical system.
These findings suggest several avenues to continue and extend this work:
• The harmonic balance technique may be appropriate for extracting limit cycles and Floquet

modes from data. Further work will be necessary to establish the feasibility and accuracy of
this approach.
• The analysis of the muscle model makes some strong predictions about the stability of cycli-

cally driven muscle. The model approximates a standard experimental configuration called a
“work loop”; thus, these predictions may be possible to test experimentally.
• The ideas developed here may be applicable to understanding the stability and control of fish

swimming. By using stimulating electrodes to introduce phase-locked perturbations to the
muscles of a swimming fish, we may be able to rigorously evaluate the phase-dependent control
potential of fish fins, and how fish use them to maintain stability.

Details of both the findings and the future directions follow.

1 Primary findings

1.1 Robust techniques for estimating limit cycles and Floquet modes
Much of the project period was spent developing numerical methods for robust estimation of limit
cycles and Floquet modes. The numerical problem is made particularly difficult because we needed
to detect relatively tiny deviations from the relatively large limit cycle.

1.1.1 Limit cycles

Shooting methods Initially, we proceeded based on the idea of a Poincaré section: a hyperplane
of co-dimension P − 1 that intersects the limit cycle transversely. The (linearized) return map, J,
(also called a Poincaré map) describes locally how perturbations from a point x∗(t) recover after
one full cycle of the nonlinear dynamics. Given a system defined as

ẋ = f(x), x ∈ RP , (3)

one can integrate the dynamics of a point x0 that starts on the hyperplane until it returns to the
same plane at another point x1.

As a method for estimating the limit cycle, this forward integration, called a “shooting” tech-
nique, works well. One starts with a candidate point close to the limit cycle xfp,0 and integrates to
find the first return xfp,1. Then, using a standard minimization technique such as Newton’s method,
one can minimize the difference |xfp,0 − xfp,1|.

3



Harmonic balance technique One can also estimate the limit cycle as a Fourier series. This
method is attractive because it implicitly enforces the limit cycle solution to be periodic. Full
details are given in Appendix A. The approximation method is quite similar to that used by Bo-
nani and Gilli (1999). For system (3), choose the coefficients of a Fourier series that produces a
candidate cycle x̂. If x̂ were on the true limit cycle,

˙̂x− f(x̂) = 0. (4)

The derivative of a Fourier series can be easily expressed in terms of the coefficients of the original
series, which allows one to simplify ˙̂x. Furthermore, (4) holds at each point along the limit cycle,
which means one can discretize the problem into M equations, each at a different phase. Then the
coefficients of the Fourier series can be found by standard multivariate minimization procedures,
such as Matlab’s fsolve function. See Appendix A for details. Interestingly, this procedure could
also be used to find an unstable limit cycle.

1.1.2 Floquet modes

In principle, one can extend the shooting technique to estimate the linearized return map J(T ).
J(0) = IP , the P -dimensional identity matrix. J(t) can be estimated by integrating

J̇(t) = A(t)J(t), (5)

where A(t) is the derivative matrix

A(t) =
∂f

∂xj

∣∣∣∣
x∈γ

(6)

evaluated on the limit cycle. Then J(T ) is estimated by integrating (5) from 0 to T , where T is the
period (Apri et al., 2010; Guckenheimer and Holmes, 1983). The eigenvalues and eigenvectors of
J(T ) correspond to the Floquet multipliers Mk (where Mk = eµkT ) and the modes at time t.

However, this technique fails when the exponents are large and negative, or when they are close
to zero but not exactly equal to zero (Fairgrieve and Jepson, 1991; Lust, 2001). When exponents
are large and negative, perturbations die out extremely rapidly, and the Floquet modes are entirely
swamped by numerical error in the integration over a full period. Similarly, it becomes very diffi-
cult to distinguish modes with exponents that are exactly zero from those that are close to but not
equal to zero, for the same reason that small differences become swamped in numerical error over
the integration period.

A better approach is to approximate the Floquet modes as Fourier series. This method is similar
to the one developed by Traversa and Bonani in a series of papers characterizing the noise in os-
cillatory electrical circuits (Bonani and Gilli, 1999; Traversa and Bonani, 2011a,b; Traversa et al.,
2008). With some careful approximation and discretization, finding Floquet modes becomes a
simple eigenvalue problem, requiring no integration.

Linearizing (3) about the limit cycle and using (3), one obtains

ż−A(t)z = 0. (7)

If ûk is a Fourier approximation of a candidate Floquet mode of the system, and µ̂k is the approxi-
mation of its Floquet exponent, then

z(t) = eµ̂ktûk(t) (8)
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should be a solution of (7). Substituting into (7), we find

µ̂kûk(t) + ˙̂uk(t)−A(t)ûk(t) = 0 (9)

after factoring out eµ̂kt. Again, since we express ûk(t) as a Fourier series, we can easily write the
coefficients of ˙̂uk in terms of the original coefficients. We discretize at M phase values along the
limit cycle. In the end, the modes and their exponents end up as eigenvectors and eigenvalues of
a large matrix that is primarily constructed from the values of the derivative matrix A evaluated at
the M phases. See Appendix B for details.

1.2 Intrinsic stability of muscle
Previous work has suggested that muscle can be self-stabilizing for static force production (e.g.
McMahon, 1984), but no one has investigated this idea in the context of cyclical motions, which
are much more common. In addition, most of the previous work has examined muscle together with
its sensory feedback (e.g. Prochazka et al., 1997). We found that muscle, with only its natural
calcium dynamics and length, velocity, and tension relationships, is strongly self-stabilizing. I
plan to submit these results as an abstract to present at the Society for Integrative and Comparative
Biology annual meeting in January, 2013, and I anticipate writing up and publishing them in the
near future.

contractile series
elastic

lc ls
L

mm

µ

dm

Figure 2: Diagram
of the muscle model,
showing the contractile
element on the left and
the series elastic ele-
ment and damper on
the right.

Brief description of the muscle model The model of muscle is taken
from Williams et al. (1998), who developed it for lamprey muscle, but the
structure of the model is appropriate for many different vertebrate mus-
cles. Briefly, muscle consists of a contractile element and a series elastic
element (Fig. 2). The contractile element produces force Pc that depends
on its length lc, contraction velocity vc, and the amount Caf of calcium
that is bound to the contractile filaments:

Pc = P0λ(lc)ξ(vc)Caf, (10)

where P0 is the maximum force. The functions λ(lc) and ξ(vc) define the
length-tension and velocity-tension relationships:

λ(lc) = 1 + λ2(lc − lc0) (11)

ξ(vc) = 1 +

{
ξmvc, if vc ≤ 0,

ξpvc, if vc > 0.
(12)

The calcium dynamics can be written with two states:

Ċa = (k4Caf − k3Ca)(1− Caf) + Caact, (13)
˙Caf = −(k4Caf − k3Ca)(1− Caf), (14)

where Caact depends on the neural activation gact, which is scaled to be between 0 and 1:

Caact = k1gact(C − Ca− Caf) + k2(1− gact)Ca(C − S − Ca− Caf). (15)
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Finally, the whole muscle element is a spring-mass-damper system:

mml̈c + dml̇c − µ(L− lc − ls0) = Pc, (16)

where M is the mass of the muscle element (called a sarcomere), D is the damping, µ is the
stiffness of the series elastic element, L is the total sarcomere length, and ls0 is the resting length
of the series elastic element (Fig. 2).

Stability of a cyclically driven muscle segment Based on this model, one can examine a cyclical
system in which the muscle length is forced to change sinusoidally (L = A sin(2πft)) and the
muscle is activated at a particular phase φact during the cycle. This is the so-called “work loop”
method used in numerous experimental studies (e.g. Josephson and Stokes, 1999).

For ease of comprehension, we use a “half-life” as a way to compare the Floquet exponents.
This is the time that it takes for half of the perturbation to die out: t1/2 = log(0.5)/µk, where µk is
the Floquet exponent.

In the work loop configuration, the slowest Floquet mode has a half life of 10.1% of a cycle,
regardless of the phase of activation. (Note that unlike autonomous systems, this is a driven system,
so there is no mode with an exponent of zero.) All others modes die away much more quickly,
in 2% or less of a cycle. Because of the short time constant of the mode, perturbations have
a small effect in general. Fig. 3a shows the effect on force production of a 20% perturbation
along the first Floquet mode. Note that all effects are small and die away rapidly, even though
the perturbation is very large compared to physiological changes, which tend to be around ±5%.
Similarly, the effect on total work done is small, regardless of the phase of activity or the phase
of the perturbation (Fig. 3b). This stability seems to be related to the calcium dynamics, because
changing the calcium rate constants can increase the duration of the first Floquet mode. Increasing
k4 (the rate that calcium is released from the filaments) or decreasing k3 (the rate that calcium binds
to the filaments) tend to increase the stability of the muscle; either change results in less calcium
bound to the filaments.

Stability of two antagonistic muscles The work-loop configuration is simple and is interesting
because of the large literature, but it is not a very realistic situation. A more realistic model would
be two antagonistic muscles, pulling on a mass-spring-damper system, similar to the muscles that
move a fish’s tail from side to side, or to the extensor and flexor muscles that move a leg forward
and back. Here, the two muscles are activated in anti-phase at a frequency fact. At the same
time, the mass-spring-damper has a mechanical resonant frequency fres and a damping coefficient
ζ . This configuration shows evidence for the necessity of sensory feedback, but, at the same
time, the possibility of using natural dynamics to steer an organism.

In this configuration, a new, slower mode appears, with a half life of as much as 80% of a cycle
(Fig. 4a). The time constant of the mode depends on the mechanical resonant frequency and the
damping coefficient. The second mode (Fig. 4b) is the same as the first mode with a single muscle,
seen above, and does not depend on frequency. The first mode exclusively affects the position
and velocity of the mass (Fig. 4c), and the corresponding lengths of the muscle segments. In other
words, because two identical muscles pulling against each other produce forces that are very nearly
matched, if the mass is perturbed off its center position, then it takes a long time to return to the
center position.
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Figure 3: Perturbations have a relatively small effect on a single, cyclically driven muscle. (a) Change
in force due to 20% perturbations along the slowest Floquet mode. Black dashed line shows steady-state
force production; red lines show perturbations. (b) Contour plot showing the change in total work done
after a 20% perturbation along the slowest Floquet mode, relative to the phase of activation and the
phase of the perturbation. Note that all changes are less than about ±10%. (c) Half life of the slowest
Floquet mode as a function of calcium parameters. The stability of muscle seems to depend primarily
on the calcium dynamics.

This slow mode points to a situation where neural and mechanical systems must work
together, each compensating for the other. In this case, a CPG driving the two antagonistic
muscles would only need to monitor and correct the mean position of the mass, in order to cancel
out the slow mode and produce extremely stable cyclical motion. Alternatively, to produce turning,
the nervous system would only need to generate a brief perturbation in the position of the mass to
cause a long lasting deviation to one side, which would cause a turn for a swimming organism.

1.3 Role of feedback

0 2.5 5
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0

Feedback strength

F
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e
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t

Figure 5: Preliminary results
showing the first three non-zero
Floquet exponents for the com-
plete neuromechanical system,
shown in Fig. 1, as the strength
of the proprioceptive feedback
varies. Note that there seems to
be a minimum value for the ex-
ponent shown in blue at a feed-
back strength of 2.

We are currently working to simulate and understand the full neu-
romechanical model shown in Fig. 1. Preliminary results suggest
that the system is also quite stable, but that there is an optimal
feedback strength for maximal stability (Fig. 5). These simula-
tions are computationally intensive to perform in Matlab, and may
require some optimization in order to be tractable.

2 Future directions
This project has generated many useful ideas that should be elab-
orated and studied further.

2.1 Estimation of limit cycles and Floquet modes
from data
A goal of this project was to develop numerical analysis tech-
niques that might be appropriate for use on data, not just on sim-
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Figure 4: With two antagonistic muscles, a slower mode appears that depends on the resonance and
damping of the mass on which the muscles pull. (a) Half-life of mode 1 as a function of the difference
of the activation frequency fact and the mechanical resonant frequency fres, and as a function of the
damping coefficient ζ. (b) Half-life of mode 2 for the same cases as in panel (a). (c) Effect of mode 1
on the position L and velocity V of the mass for fact − fres = 0.7 and ζ = 4.

ulations. The harmonic balance technique developed here may be
adapted for estimating limit cycles from data, and may even be
used for estimating Floquet modes. I briefly describe how this
might be possible; further work will be necessary to establish the feasibility of this approach. As I
elaborate these ideas further, I plan to develop a manuscript for publication.

Estimating limit cycles To estimate a limit cycle from data, one can perform essentially the
same optimization approach described in Appendix A. Given a noisy time series data set X(ti)
at many times ti, one can estimate ẋ numerically by central differences as dX. Again, choose a
Fourier approximation for a candidate limit cycle x̂. Interpolate the estimated state velocity dX on
to the candidate limit cycle. Then, optimize the limit cycle to minimize

˙̂x− dX|x=x̂ . (17)

As before ˙̂x can be expressed in terms of the original Fourier coefficients. One would have to
impose some smoothness constraint on x̂; otherwise, it might wiggle around to every data point.
Also, one might need to have some outlier detection for velocities. Some values of dX might
represent the true state velocity of the system, but others will be noise.

Estimating Floquet modes To use the harmonic balance approach to estimate Floquet modes,
one only needs to know the limit cycle (which may be estimated using the technique above) and
the value of the derivative matrix on the limit cycle. The derivative matrix does not need to be
evaluated everywhere. Estimating a high-dimensional derivative matrix is challenging, but it will
be significantly easier to estimate on a small number of points, rather than across the entire state
space. To estimate the derivative matrix, it is probably best to introduce controlled perturbations,
rather than trying to analyze existing time series. These ideas inform some of the experiments
proposed in §2.3.
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2.2 Stability properties of muscle
The observations described above (§1.2) make strong predictions about the behavior of muscle.
Such predictions can be tested, at least to some extent, using in vitro muscle physiological experi-
ments. The work loop technique used as a baseline model of muscle is an experimental technique
(e.g. Josephson, 1993). Thus, one could perform physical experiments that are quite similar to the
computational models developed here, in order to test the predictions of the model.

An experimental challenge, however, is measuring and perturbing the system’s state. Total
length and velocity are straightforward to measure and manipulate, but one cannot measure the
state of the contractile element separately. However, one can measure the elasticity of the se-
ries elastic element, and to some extent the passive damping properties of the muscle (McMahon,
1984), which would enable an estimate of the state of the contractile element. Calcium concentra-
tions are possible to measure using calcium sensitive fluorescent dyes (Vergara et al., 1991), but
can only be perturbed over long time periods by changing total calcium concentrations in the saline
bath holding the muscle fiber.

Such experiments, while challenging, may help to establish further the self-stabilizing proper-
ties of muscle during cyclical motions.

2.3 Control potential of fish fins
Inspired by these computational results and the experiments of Sponberg et al. (2011a,b), I am
developing experiments to examine the stability of fish as they are swimming and establish the
control potential of fish fins. In these experiments, we will implant fine wire electromyographic
electrodes (e.g. Tytell and Lauder, 2002) in both the axial red muscles that power the side-to-side
motions of the body and tail, and in the smaller muscles that control the motions of the dorsal and
anal fins. These electrodes will serve a dual purpose: they will both record muscle activity and will
also be able to stimulate the muscle to contract. My previous work has shown that the dorsal and
anal fins are not passive keels, but actively generate substantial forces (Tytell, 2006).

Using the techniques described above (§2.1), we will estimate the steady limit cycle, including
both three-dimensional kinematic data and muscle activity. Then, we will perturb the muscle
activity, stimulating the muscles at particular phases in the swimming cycle. This will allow us
to measure the control potential of the fins as a function of phase, and to estimate something
analogous to Floquet modes. Because we cannot measure all of the states of the swimming fish,
we will only be able to estimate these modes in a smaller subspace.

Nevertheless, controlled perturbations of this sort will be informative and perhaps surprising.
Sponberg et al. (2011b) found that a muscle in the cockroach leg produced a very different effect
when it was stimulated during the running cycle, compared to its effect during standing. Similarly,
we might expect counterintuitive results from out experiments. For example, fins have muscles
called “elevators” that elevate the fin rays, making the fin area larger. If the fish is stationary, these
muscles probably have very little effect on forward propulsion. During swimming, however, they
may have a large effect, because they change the fin area.

9



Appendices
A Harmonic balance approach for estimating limit cycles
The approach described below is quite similar to that developed in papers by Traversa and Bonani
(Bonani and Gilli, 1999; Traversa and Bonani, 2011a; Traversa et al., 2008).

Consider a dynamical system defined as

ẋ− f(x) = 0, (18)

where x is a state variable in P dimensions. We are aiming to write the dynamical system as a set
of equations for the Fourier components of the solution.

Write the limit cycle solution x(t) in terms of N harmonic components for each of the i di-
mensions:

xi(t) = xfi0 +
N∑
k=1

[
xfcik cos(kωt) + xfsik sin(kωt)

]
. (19)

Based on the coefficients, define a P (2N + 1) component frequency state vector

xf =
[
xf10 xfc11 xfs11 · · · xfc1N xfs1N xf20 xfc21 xfs21 · · · xfcPN xfsPN

]T
(20)

that consists of the components for each dimension stacked on top of each other.
Now let’s sample the system at M samples in time, spread evenly through the period T =

2π/ω:

tj =
2π

ω

j

M
(21)

where M ≥ 2N + 1. Define a time-sampled state vector, similar to the frequency state vector

xt =
[
x1(t1) x1(t2) · · · x1(tM) x2(t1) x2(t2) · · · xP (tM)

]T (22)

Then we can write xt and xf in terms of each other by multiplying by a constant matrix Γ−1:

xt = Γ−1xf xf = Γxt. (23)

The matrix Γ−1 consists of an M × 2N + 1 dimensional matrix Γ−10 that is repeated P times along
the diagonal.

Γ−10 =


1 γc11 γs11 γc12 γs12 · · · γc1N γs1N
1 γc21 γs21 γc22 γs22 · · · γc2N γs2N
... . . . ...
1 γcM1 γsM1 γcM2 γsM2 · · · γcMN γsMN

 (24)

where

γcjk = cos(2πjk/M) (25)
γsjk = sin(2πjk/M), (26)
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and finally

Γ−1 =


Γ−10 0 · · · 0
0 Γ−10 · · · 0
... . . . ...
0 0 · · · Γ−10

 (27)

with P repetitions of Γ−10 .
We can express ẋ easily

ẋi(t) =
N∑
k=1

−xfcikkω sin(kωt) + xfsikkω cos(kωt) (28)

or
ẋf = ωΩxf , (29)

where Ω is a constant matrix. Again, we have an M × 2N + 1 dimensional matrix Ω0

Ω0 =



0 0 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
0 −1 0 0 0 · · · 0 0
0 0 0 0 2 · · · 0 0
0 0 0 −2 0 · · · 0 0
... . . . ...
0 0 0 0 0 · · · 0 N
0 0 0 0 0 · · · −N 0


. (30)

where Ω is constructed by stacking Ω0 P times along the diagonal.
Thus we have 2N + 1 equations for the 2N + 1 coefficients and the frequency ω. We need

an additional condition to solve for the frequency. Following Bonani and Gilli (1999), we set
xfs11 = 0, which amounts to saying that the initial phase of the oscillator is arbitrary.

We can solve for the 2N + 1 coefficients and the frequency ω with the following set of at least
2N + 2 equations

Q(xf , ω) =

{
ωΩxf − Γf(Γ−1xf ) = 0

xfs11 = 0
(31)

The last condition amounts to saying that the phase of the oscillator is arbitrary Bonani and Gilli
(1999).

For rapid numerical solution, we can also write the Jacobian of the system Q(xf , ω) from
Eqs. (31),

∂Q

∂
[
xf ω

] =

[
ωΩ− ΓDfΓ−1 Ωxf[

0 0 1 0 · · · 0
]

0

]
(32)

where Df is an MP ×MP matrix with the following elements arrayed along the diagonal[
∂f
∂x1

(t1)
∂f
∂x1

(t2) · · · ∂f
∂x1

(tM) ∂f
∂x2

(t1) · · · ∂f
∂xP

(tM)
]

(33)
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The system converges pretty well using Matlab’s fsolve function, except that there are multi-
ple zeros when ω = (2πk)/T , where T is the fundamental period and k > 1. It’s easy to check,
though, because the higher harmonics should be lower in magnitude than the first harmonics, by
definition, if ω represents the fundamental period:

xfcik < xfci1 and xfsik < xfsi1 (34)

for all k > 1.

B Harmonic balance technique for estimating Floquet modes
and multipliers

Having set up this whole big framework, it becomes trivial to estimate both the Floquet modes and
multipliers. First, we consider the system from Eq. (18) and linearize around the limit cycle, so
that z(t) = x(t)− x∗(t), where x∗(t) is the limit cycle. Then

ż−A(t)z = 0, (35)

where A(t) is the Jacobian of the state equation defined on the limit cycle,

A(t) =
∂f

∂x

∣∣∣∣
x∗(t)

. (36)

If uk(t) is a Floquet mode of the system, then

z(t) = eµktuk(t) (37)

is a solution of Eq. (35) with initial condition z(0) = uk(0). Substituting in to Eq. (35), we find
that

µkuk(t) + u̇k(t)− A(t)uk(t) = 0. (38)

Then we again discretize at M time intervals to write utk, a time-sampled version of uk(t), and
the corresponding frequency components ufk ,

utk =
[
uk1(t1) uk1(t2) · · · uk1(tM) uk2t1 · · · ukP (tM)

]T (39)

ufk =
[
ufk10 ufkc11 ufks11 · · · ufkc1N ufks1N uf20 ufkc21 ufks21 · · · ufkcPN ufksPN

]
.(40)

These are related by the same Γ matrix as before:

utk = Γ−1ufk and ufk = Γutk (41)

We need to write a version of the A matrix sampled at M time points. If Aij(t) is the i, j
component of A at time t, then we write At

ij = diag
{
Aij(t1) Aij(t2) · · · Aij(tM)

}
, again

taking each time-sampled value and aligning them on the diagonal. The entire time sampledMP×
MP matrix At consists of the diagonal blocks

At
11 At

12 · At
1P

At
21 At

22 · At
2P

... . . . ...
At
P1 At

P2 · At
PP

 (42)
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Having done that, we can write Eq. (38) in the frequency domain

0 = Γ
[
µku

t
k + u̇tk −Atutk

]
(43)

= µku
f
k + ωΩufk − ΓAtΓ−1Γutk (44)

= µku
f
k + ωΩufk − Âufk (45)

where Â = ΓAtΓ−1. Solving for the Floquet modes and multiplier is now just an eigenvalue
problem: (

ωΩ− Â
)
ufk = −µkufk . (46)

There are (2N + 1)P eigenvalues µfk of Eq. (46), which are arrayed in columns along the
imaginary axis and are related to the P Floquet multipliers µk of Eq. (35) by the following

µfk = µk + qiω (47)

where q = ±1 . . . N .
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